Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia.

نویسندگان

  • Nancy Osorio
  • Sergiy Korogod
  • Patrick Delmas
چکیده

Voltage-gated sodium (Nav) channels play a central role in gastrointestinal physiology because they transmit depolarizing impulses in enteric neurons, thereby enabling the coordination of intestinal motility. However, little is known about the ion channel machinery that specifies firing pattern of enteric neurons. Here, we used in situ patch-clamp recording of myenteric neurons from mice to define functionally the Nav channel subtypes responsible for the electrical signature of myenteric neurons. We found that mouse myenteric neurons exhibit two types of tetrodotoxin-resistant Na(+) currents: an early inactivating Na(+) current (INaT) and a persistent Na(+) current (INaP). INaT was encountered in all myenteric neurons, whereas INaP was preferentially found in Dogiel type II sensory neurons. Knock-out mouse studies, in combination with pharmacological assays, indicate that INaT is carried by the Scn5a-encoded "cardiac" Nav1.5, whereas INaP is attributed to the Scn11a-encoded Nav1.9. Current-clamp experiments show that Nav1.9 flows at subthreshold voltages, generating tonic firing. In addition, action potential (AP) clamp reveals that Nav1.5 contributes to the upstroke velocity of APs, whereas Nav1.9, which remains active during the falling phase, opposes AP repolarization. We developed a computational model of a Dogiel type II myenteric neuron that successfully reproduces all experimentally observed phenomena and highlights the differential roles of Nav1.5 and Nav1.9 in the control of excitability. Our data illustrate how excitability can be finely tuned to provide specific firing templates by the selective deployment of Nav1.5 and Nav1.9 isoforms. We propose that Nav-dependent ENS disorders of excitability may play important roles in the pathogenesis of digestive diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncanonical Roles of Voltage-Gated Sodium Channels

The Hodgkin-Huxley formulation, at its 60th anniversary, remains a bastion of neuroscience. Sodium channels Nav1.1-Nav1.3 and Nav1.6-Nav1.9 support electrogenesis in neurons and are often considered "neuronal," whereas Nav1.4 and Nav1.5 drive electrogenesis in skeletal and cardiac muscle. These channels are, however, expressed in cell types that are not considered electrically excitable. Here, ...

متن کامل

Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons.

Voltage-gated Na(+) currents play critical roles in shaping electrogenesis in neurons. Here, we have identified a TTX-resistant Na(+) current (TTX-R I(Na)) in duodenum myenteric neurons of guinea pig and rat and have sought evidence regarding the molecular identity of the channel producing this current from the expression of Na(+) channel alpha subunits and the biophysical and pharmacological p...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Immunohistochemistric study of the intra-cardiac ganglia of the pig heart

Heart contains a variety of neurons known to influence cardiac functions. Little is known about the neurochemistry of these neurons. In this study, neurochemistry of intra cardiac neurons of the intrinsic cardiac ganglia was investigated. The technique used allows studying the morphology of the ganglionated nerve plexus found within the atria and great cardiac vessels as well as of individual n...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 15  شماره 

صفحات  -

تاریخ انتشار 2014